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A SUPERRESOLUTION METHOD
OF ARMA SPECTRAL ESTIMATION*

James A. Cadzow and Randolph L. hoses

Dept. of Electrical Engineering
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

ABSTRACT Unless some constraints are imposed on the
time series' basic nature, however, there exists

Recently, a method for generating an ARMA a fundamental incompatibility in estimating the
spectral estimator model which possessed super- required statistical knowledge from the finite set
resolution performance was developed (2]. This of data. This dilemma is usually resolved by
method entailed minimizing a weighted quadratic postulating a finite parameter linear model to
functional of a set of "basic error terms." An represent the time series. In terms of parameter
issue which remained to be resolved at that time parsimony, the causal autoregressive moving average
was the selection of the weighting matrix that (AFMA) model of order (p,q) as specified by
characterized the functional being minimized. A
weighting matrix selection procedure has recently x(n) + q ax(ni) - br(n-j) C4)
been developed and is herein reported C 8]. This £in + a
orocedure has typically yielded an improvement in i-I
spectral estimation performance, is generally the most effective linear model [1].

In this model, the (unobserved) excitation process
1. INTRODUCTION c(n)} is assumed to be zero-mean, unit variance

Gaussian white noise. It is important to note that
In this paper we shall be concerned with the the more specialized autoregressive model

task of estimating the power spectral density of a (i.e., bj E 0 for j 0 0) generally requires a much
zero mean, wide sense stationary random time series higher model order p to achieve comparable
(x(n) from a finite set of observations. To this spectral escimates. Conceptually, then, the more
end, knowledge of the time series' underlying auto- general ARMA model is the logical model choice.
correlation sequence as formally defined by It is well known that the power spectral den-

r (n) - E(x(nk) *(() sity of a process(x(n)}that satisfies (4) is givenby: b+b 1eJw +b-jqw1
2

conveys all the information required. Here, E{ } W 0 q
denotes the expected value operators and * denotes . I +a + a 'pe- ()
:he operation of complex conjugation. The time II 4 a e
series is characterized in the frequency domain by
its power spectral density as given by Thus the task of estimating the power spectral

-: density of the time series can be accomplished by
S ) X rW(n)e-Jn (2) estimating the AMA model parameters ai and bj.

; ich1 is recognized as being the Fourier transform Several procedures for estimating the ai andof the autocorrelation sequence. Fb parameters have recently been developed [2-8].0 these procedures, one developed by Cadzow [2]
U'pon examination of (1) and (2) it is apparent has been shown to be effective in a variety of

chat determination of the time series power spectral cases. The crux of this procedure lies in obtain-

density entails complete knowledge of the ing the autoregressive parameters by minimizing a
generally infinite length autocorrelation sequence. weighted quadratic function of a set of zero mean
Here. we will be concerned with extracting this error elements. It was pointed out in [2] that the
information from the finite set of time series effectiveness of this procedure is dependent on a
observations judicious selection of the weighting elements in

the quadratic function. This paper develops an
x(). x(2)....() ) alternative weighting element selection to that

used in [2] which results in improved spectral .
estimates.

This work was supported in part by the Office of t 0la Research under Contract -00014-80-C-o303
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II. THE MODEL EQUATION ERROR and
SPECTRAL ESTIMATOR. N-1 4 NCik- w (2)x(Q-k)x(Z-=)x* (-x*(I

The spectral estimation procedure of this mCq+l w-s n s

paper is predicated on the procedure in (2]. For i.k 1.,2 ....p
completeness, this procedure is discussed below.

s amax(o~l, P+l) (10d)
Of primary importance in spectral estimation

is the method for estimating the autoregressive co- An improvement in the above autoregressive co-
efficients ai in equation (4). An effective method efficient estimation procedure can be realized by
for estimating these coefficients entails multiply- also considering the backward version of the time
ing both sides of (4) by the term x*(n-m) to yield series (x(n)}. Also, an estimate of the numerator
the "basic error terms" spectrum B() in (5) must be obtained in order to

p arrive at the complete power spectral density esti-
mate of (x(n)}. The details of these two tasks aree(mn) - x(nt*(nm) + Z a1 1(nli)Z*(n) (6a) presented in [2].

L-1
q7 b e(n-j)x (U-M) for q+l <m<N-1Jcn-f - II. WEIGHTING ELEMNT SELECTION

max(p+l,+l).nIN

(6b) In order to obtain autoregressive parameters
using the above procedure, the elements w(m) in (8)

where the range on the m and n variables is dictat- must first be selected. In [2] the weights
ed by the time series observation range l< k <X.
If the time series is in fact an AMA process of w(m) - (-m) 4  q+l ' m _ N-1 (11)
order less than or equal to (p,q) then the basic
error terms are each zero mean random variables, were employed.
:urthermore, the basic error terms are seen to be
functtons of the autoregressive coefficients A more prudent weight selection can be
l., a2, ... ap. With these two properties in mind, developed by considering the random terms

a reasonable selection of the autoregressive co-
efficients is one that causes each of the e(m,n)s n 2
terms to be as close to its mean value of zero as e(m,n) q+< m < N-I (12)
possible. This goal is achieved by minimizing a jn-
squared-error criterion of the form

associated with the weights w(m) in (8) [8 1. A
f(a) = j (7) logical selection for the w(m) weights is the

inverse of the variances of the terms in (12),
where e is a vector of appropriately arranged that is
e(m.n) terms, W is a positive semidefinite weight-
ing macrix, and denotes the operation of complex I
conjugate transposition. w(m) *var. f e(,n) ql < m < (-1 13)

A more specific format of the minimization
criterion (7), and che one considered in [2]. is In this way, the terms in the minimization cricer-

N- L N 2 ion (8) which have smaller variances from their
.(A) = w(m) e(m.n) s -max(p+l,m+l) mean value are weighted proportionately higher than

a-q+L n-s (8) those terms with larger variances from their mean.

In this expression the w(m) are nonnegative It is easily shown that

that the sac of autoregressive coefficients which n-s Z-8 s m I
minimize (8) are given by:

- _ L I (9) where
T l;Obl ib 0 < lq

where a - (a1  a...a(] (lOa) L-0

C - . C(m) - c*(mi) 1 - q (14b)
C -,cik p .p (LOb) t

-( , 1c 0 otherwise
10 " { ' 2o .. 01(~t



Unfortunately. the desired variances are seen a *
to be dependent on the unknown parameters - . l - 2,4,6 . q (20b)
bo , b1 , .... bq. However, an approximate express- where Im[Bj] denotes the imaginary part of fII.
ion for the inverse variance weights of (13) can If q is odd the unpaired zero is assumed to be
be realized if a reasonable approximation of the
c(m) element~s in (14b) can be found. uniformly distributed on the real axis inside the

ueit circle, t

One can gain Insight about the structure of 2. -1 < 31 1 im([q 1 0 (20c)
the c(m) elements by forming the polynomials B(z) 2 - q -
and C(z) defined as q otherise

B(z) =bozq+b1zq-1 ... + b q-1 4bq (1Sa) Using these assumptions about the zeroes of

-(z), one can straightforwardly calculate the
+( --... (O) c()z desired approximation to C(z) by determining the

expected value of expression (18)

(15b) C(z) - E{z-q 11 (z-6i)(-z i)} (21)
i-O

It is easily shown that
-1 By carrying out this calculation, one finds that

C(z) - B(z)B(z " ) (16) for a complex time series (x(n)}

Furthermore, 3(z) can be factored as Cc(z) - i (22a)

q
3(z) - b0 1=(z - 2i (17) and for a real time series

e z
q [ z

4 + Z 2 
(221

where the 31 are zeroes of the polynomial (z). (

Applying (16) it is found that

2 _q q where
CWz a b 0 z 7, (z-3 I)(l-zsi1) (18) e ven

Thus, C(z) can be found (to within the constant b 2 S) q odd

using (18) from knowledge of the q zeroes
3
1 of B(z). Thus, the approximate inverse variance weights are

given by
A reasonable approximation of C(z) and there- -I

fore of the c(m) elements can be found by w(m) - r (Z-n)Z(Z-n)1 q+l < m < '-1
approximating the Location of the zeroes of 3(z). --Z(-
One such approximation is realized by assuming that n-
each zero is a random variable uniformly distribut-
ed within the complex unit circle,

1 
so that its where a - max(w4l,p+l) and the (m) elements are

probability density function is the coefficients corresponding to the zm terms of
the polynomials (22a) or (22b).

) " 1 •
. 1 (19)

Ii , i-1,2,..q zV. ,UMERIcAL EXAMPLE

O , otherwise

In order to compare the effectiveness of the

If the time series -x(n)} is a real process, new AlMA spectral estimator with the estimator

then the zeroes of 3(z) must form complex conjugate in [21, the classical problem of rsolvin$

pairs. For this case it is assumed that q/2 of the two closely spaced (in frequency) sinusoids in

zeroes are uniformly distributed within the upper white noise will be considered. Specifically, the

half of the complex unit circle, that is time series under study is specified by

* sL) - -. . :3i. and 1mei ] _ 0 (20a) x(n) - v2cos(O.4in)4 -Tcos(0.4265n)-w(n) (24)

0 otherwise where (w(n)} is a white Gaussian noise process of

i 1.3. q-l zero man and unit variance. The sinusoids of
normalized frequencies 0.4 and 0.426 are readily
calculated to have signal-to-noise ratios (S7l) oi

: a zero of B(z) is outside the unit circle, then l0dB and 0d, respectively. A sequence of length
t:ie corresponding zero of B(z " l ) is inside the unit 512 defined over 0 : n < 511 was next generated
circle. and from equation (16) it is clear that using this relationship. Furthermore, in order to
C"z) will not be affected, provide a statistical basis for our comparison,



this 512 length sequence was then decomposed into [61 Cadzow, J. A., "High Performance Spectral
eight disjoint sequences each of length 64 defined Estimation: A New ARMA Method," IEEE Trans.
on 0 - n< 63, 64< n 4 127, .. 448 < n 511l. Acoustics, Speech and Signal Processing. Vol.
An ensemble consisting .f eight subseqiuenceas each ASSP-Z6, No. 5, pp. 524-528. Oct. 1980.
of length 64 has thereby been generated with each
subsequence having a different noise sample and a (71 gay, S. M., "A lew AlM Spectral Estimator."
different initial phase between the two sinusoids. IEEE Trans. Acoustics. Speech, and Signal

*This latter condition is useful in revealing any Processing, Vol. ASSP-28. No. 5, pp. 585-58,
potential sensitivity to initial phase that the Oct. 1980.
new AlMA spectral estimation method may possess.

[81 Noses, R. L., "An Iterative Algorithm for
The spectral estimates which resulted when AMUA Spectral Estimtion,' Master's Thesis,

the (I-in)4 weights and the new inverse variance Virginia Polytechnic Institute and State
* weights were applied to the ARMt spectral estima- University, 1980.

tor are displayed in Figures Ia and lb, respective-
Ly. The ordinates are scaled from -20dB to 60dS for
each individual plot. In both cases the spectral
estimator order was (15,15). It in clear that the
inverse variance weight estimator was able to
resolve the two sinusoids in more cases than the
(N-m)4 weight estimator could. Moreover, the
incidence of false peaks in the inverse variance
weight estimates is smaller than that of the
(NI-i)4 weight estimates.

- V. CONCLUSIONS

An improved weight selection for a recently
developed.ARMA spectral estimation procedure was
developed.'*The autoregressive parameters are
found in this procedure by minimizing a weighted
sum of squares of zero mean basic error term.

* The new weight selection is chosen to provide more
heavy weighting to those terms in the sum which
possess lower variances. Empirical evidence
indicates that this now weight selection provides
superior spectral estimation performance when cook- 'O Q'2 O4 O8 0.0 .3
pared to the original weight selection. NORMALIZED FREQUENCY
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